LS 506 Human Genetics (2 credits) R Muthuswami/New faculty

S No	Торіс	Hours
1.	Organization of Human Genome	5
	 Nuclear and mitochondrial genome 	
	 Mitochondrial genome organization, homoplasmy and 	
	heteroplasmy,	
	 Karyotyping- G and R stain, C stain, FISH, and SKY 	
	• Protein coding genes- Alternative splicing, pseudogenes, gene	
	families,	
	 Genes-within-genes, overlapping genes 	
	 Non-coding genes- tRNA, rRNA, small ncRNA, lncRNA, 	
	piRNA,	
	 endogenous siRNA 	
	• Repetitive elements- Satellite DNA, Mini satellites,	
	microsatellites	
	• Transposable elements- DNA transposons, LTR retroposons,	
	non-LTR retroposons	
2.	Mapping Techniques	4
	• DNA markers-RFLP, AFLP, SSR, RAPD	
	• Genetic mapping- Radiation hybrid mapping, Linkage	
	analysis, LOD score	
	• Physical mapping- Contig mapping, how the human genome	
	was sequenced	
2	Introduction to NGS and its applications	10
3.	Mutations and Human Diseases	12
	• Monogenic, oligogenic, and polygenic disorders	
	• Mode of inheritance of monogenic disorders- dominant vs	
	recessive; autosomal vs x-linked, pedigree analysis	
	• Identifying disease genes- using genetic markers, position-	
	Allelia heterogeneity. Leave heterogeneity. Clinical	
	• Anene heterogeneity	
	Compound heterozygosity	
	 Penetrance and expressivity 	
	Oligogenic disorders	
	 Polygenic disorders- Linkage disequilibrium GWAS studies 	
	to identify SNPs	
	Trinucleotide repeat disorders	
	Chromosomal aberrations	
	• Genomic imprinting	
	• Mitochondrial disorders	
4.	Animal models for Human Diseases	3
	Different types of animal models	
	Creating animal models	

5.	Gene Therapy and identification of mutations	4
	Virus based transfection strategies	
	Non-virus based transfection strategies	
	Gene therapy approaches for polygenic disorders	

Recommended Reading: Human Molecular Genetics by Stratchan and Read\