Optional course

LS 578—Nanobioscience—2 credits

Karunakar Kar

S No	Topics	Contact Hours
Introduction to Nanoscience		
1.	Introduction to Nanoscale, History of nanotechnology, and nanoscience	2
	in nature, Discussion on CNTs, MWCNT, Quantum dots	
2.	Molecular based study of condensed matter; low-dimensional materials	2
3.	Properties of nanomaterials: size, surface charge, conductivity, optical	3
	properties and biocompatibility. Spectroscopy of nanomaterials (FTIR,	
	UV-Vis, Raman, Fluorescence)	
Synthesis and characterization of nanomaterials		
4.	Fabrication of nanostructures, Top down and bottom up approaches, their	2
	relative merits, metallic nanoparticles, semi-conductor, and biopolymeric	
	nanostructures, and Magnetic nanoparticles.	
5.	Methods of characterization: TEM, SEM. EDAX, DLS, XRD	3
6.	Stability of nanoparticle dispersions, Surface functionalization of	2
	nanoparticles by various methods.	
7.	Rationally engineered Nanostructures and nanomaterials based on	3
	proteins, peptides, carbohydrates, and nucleic acids	
Biological application of Nanotechnology		
8.	Strategies to design biologically active nanostructure-based biomaterials.	3
	Interaction of nanoparticles with biomolecules, determination of binding	
	constants, effects on secondary structure	
9.	Cell uptake, cytotoxicity of nanomaterials, size, shape and dose	3
	dependence effects.	
10.	Biomaterials, immobilized enzymes and. Size dependent enzymatic	3
	kinetics, drug loading and release kinetics, Drug delivery systems	
11.	Nanomaterials as Biosensors, Cellular imaging tools, tissue scaffolds, 3D	3
	tissue culture	

Recommended Textbooks, reference books:

(1) Poole, C.P., Owens, F.J. Introduction to Nanotechnology Wiley, 2012

(2) Cao, G. Wang, Y. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications World Scientific,

(3) Bohidar, H.B and Rawat, K: Design of Nanostructures: Self-Assembly of Nanomaterials, Wiley-VCH, 2017

(4) Pradeep, T. Nano: The Essentials: Understanding Nanoscience and Nanotechnology: Mc-Graw-HillEducation

(5) Cox, M.M, Nelson, D.L., Lehninger Principles of Biochemistry, W.H. Freeman & Co, 2009.

(6) Voet, D., Voet, J.G., Pratt, C.W., Fundamentals of Biochemistry: Life at the Molecular Level, Wiley, 2012

(7) Selected Review Papers/Book Chapters